Exercise 42

In Exercises 41-58, find any intercepts and test for symmetry. Then sketch the graph of the equation.

$$
y=\frac{2}{3} x+1
$$

Solution

To find the y-intercept, plug $x=0$ into the function.

$$
y=\frac{2}{3}(0)+1=1
$$

Therefore, the y-intercept is $(0,1)$. To find the x-intercept(s), set $y=0$ and solve the equation for x.

$$
\begin{gathered}
\frac{2}{3} x+1=0 \\
\frac{2}{3} x=-1 \\
x=-\frac{3}{2}
\end{gathered}
$$

Therefore, the x-intercept is $\left(-\frac{3}{2}, 0\right)$. Replacing x with $-x$ changes the equation, so there's no symmetry with respect to the y-axis.

$$
y=\frac{2}{3}(-x)+1=-\frac{2}{3} x+1
$$

Replacing y with $-y$ changes the equation, so there's no symmetry with respect to the x-axis.

$$
-y=\frac{2}{3} x+1 \quad \rightarrow \quad y=-\frac{2}{3} x-1
$$

Replacing x with $-x$ and y with $-y$ changes the equation, so there's no symmetry with respect to the origin.

$$
-y=\frac{2}{3}(-x)+1=-\frac{2}{3} x+1 \quad \rightarrow \quad y=\frac{2}{3} x-1
$$

A graph of the function versus x is shown below.

